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Connectionist Temporal Classification



CTC

Motivation

O Traditional hybrid models need forced alignment to provide frame-
level label information.

O Hybrid systems do not exploit the full potential of RNNs for sequence
modelling.



Proposed Methods

The basic idea Is to Interpret the network outputs as a
probability distribution over all possible label sequences,
conditioned on a given Input sequence.

Example:

Input Sequence: 100 frames
Target Sequence: hello

Traditional Hybrid Model:

Label. hhhheeeeeeeellllllllllIloocooo0
CTC:
Possible Sequence: __h_ee_ IIl_Il__o__

_hh_o_e___1__TlIl_o__
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Forward-Backward Algorithm
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Loss Function
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Advantages

O CTC does not require alignment information.

O Thanks to the existence of a large number of spaces, the
decoding speed of the CTC model is greatly improved.



Neural Transducer



Why We Need Neural Transducer ?

Motivation

© CTC does not model the interdependencies between the
outputs.

© CTC cannot perform end-to-end joint optimization with
language models.

© CTC requires that the output sequence is not longer than input
seguence.



RNN-Transducer
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(b.) RNN-Transducer

RNN-Transducer has three parts.

(1) Transcription Net (Encoder) is similar to an
acoustic model in a traditional ASR systems.

(2) Prediction Net (Decoder) can be regard as a
language model.

(3) Joint Net can combine the encoder outputs and
the decoder outputs to compute output logits.



Joint Net

h(k,t,u) = exp (ff + gr)

Pr(k € Y|t,u)

\

B h(k,t,u)
zk*’ej_) h(kf: t: H)

The Decoder Output

The Encoder Output




Output Probabillity Lattice

Forward Algorithm
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Loss Function
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Comparisons
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(b.) RNN-Transducer

P(yu|yu I,* " :yU'JX)
Softmax
A lldcc
U
Decoder
A A
fi,"»u—'l Cy
Attention
att jk A henc
u—1
Encoder
X1 XT

(c.) Attention-based Model
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(d.) RNN-Transducer with Attention



Comparisons
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[1] Exploring Neural Transducers for End-to-End Speech Recognition



Comparisons

o ) RN Transd it s Atention

Fig. 3. Visualization of learned alignments for the same utterance using CTC (left), RNN-Transducer (middle), and Attention
(right). The alignments are between ground-truth text (y-axis) and audio features fed into the decoder(x-axis). Note that
Attention does two more time-scale downsampling, which results in 4 x shorter sequences (X axis) compared to the other two.



Advantages

© No conditional independence assumption between the
predictions at each output step

© Integrated language model
© End-to-end joint optimization

© Online decoding capability



Improved Neural Transducer



Recurrent Neural Aligner
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Recurrent Neural Aligner
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Multi-stages of Training a Wordpiece RNN-T

Encoder Hierarchical-CTC Pre-training
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[1] Exploring Architectures, Data and Units For Streaming End-to-End Speech Recognition with RNN-Transducer



Take home messages

© Neural Transducer’s performance is better than CTC, but
slightly worse than Attention

© Neural Transducer is very hard to train, so pre-training is
Important.

© Neural Transducer is very suitable for online decoding.
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